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Abstract. This paper concerns the potential field for Yukawa-type forces in a cylindrical
geometry. A set of formulae is derived for a cylindrical body in order to reduce the integration
over the body from 3D (or 6D for a pair of interacting bodies) to either a 1D integration, or
an analytical formula. Using these formulae we consider analytically the potential field of two
Yukawa force terms, and reanalyse Long’s and Speroet al’s experiments for the inverse-square
law test. The results show that theα–λ graph produces similar results to the case where a single
Yukawa term is considered. The theory can also be applied to other problems in short-range
force experiments that involve cylindrically shaped bodies as the test masses.

1. Introduction

During the last twenty years the intriguing possibility has arisen of the existence of a
weak gauge force coming from different theoretical schemes in particle physics. On the
macroscale it could lead to a violation of the classical Newtonian inverse square law of
gravitation. However, the inverse square law is known to agree with astronomical data
to very high accuracy, and has been widely accepted for the gravitational field at these
distances. Furthermore, the inverse square law has been confirmed for the distance range
from 1 km to several astronomical units. However, it is currently under experimental
investigation at shorter distances.

The interest in such experiments comes mainly from the theoretical effort of unifying
gravity with the other three forces of Nature, as this would result in the gravitational force
being mediated by an exchange of particles. In some models various massless particles
would lead to a Yukawa-like contribution to the gravitational interaction potential between
massive bodies. Such forces are ‘long-range’, and can be observed—in principle—on the
laboratory scale of length. Deviations from the inverse square law can arise in two ways: as
a true departure of gravity itself, or through additional non-gravitational forces. In the first
case the deviation would be the same for all materials; but if instead there were additional
forces that could become confused with gravity, then their effects might depend upon the
nature of the material. In the first case above, the gravitational potential would have the
form −(GM/r)(1+αe−r/λ), and one of the aims of recent gravitational experiments in the
laboratory has been to set limits to such deviations from the inverse square law.

Historically, the first laboratory experiment on the inverse square law was carried out by
Mackenzie, in 1895. He used a torsion balance and obtained the result that the inverse square
law was valid to about 1% at distances of 30 to 70 mm (at the limit of experimental error).
Following this, no further experiments of this type were made until that of Long (1976).
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Long used a torsion balance with two ring masses, one large and one small. He placed
in turn attracting masses in the form of the two rings opposite a test mass on one end of
the beam of a torsion balance. At that distance the Newtonian forces from the two rings
should have been equal. His result was expressed in terms of the relative difference of
torque produced by the two rings. If interpreted in terms of the parameterαµ2(µ = 1/λ),
then his result was 0.07 < αµ2 < 0.1 at a distance of from 0.025 to 0.175 (m). Ifα = 1

3,
for example, thenλ lies between 1.8 and 2.2 m. This was the result that was analysed by
Chen (1982), using his non-Newtonian formulae.

Spero et al (1980) carried out an experiment analogous to the Faraday cage in
electromagnetism. The Newtonian force inside a long (apparently infinitely long) cylinder
is zero, whilst a non-Newtonian force is not, and should be proportional to the product of
α and µ2. The principle of the experiment was to look for deflections of the balance as
the cylinder was moved from side to side while the test mass was fixed in the initial centre
of the cylinder. However, their experimental result interpreted by Chen (1982) was quite
different from Long’s. In terms of theαµ2(µ = 1/λ) parameter,αµ2 < 0.029 m−2 i.e. if
α = 1/3 thenλ > 3.4 m.

Chen and Cooket al in Cambridge (1984) subsequently carried out two groups of
experiments, prompted by the different results of Long and Speroet al. In the one group
the net force on the test mass was made close to zero, while in the other there was a net
force. They used three cylindrical masses, and measured the torque difference due to the
different masses—comparing their results with their theoretical predictions. Their non-null
result wasλ > 3.4 m for α = 1

3, whilst their null result wasλ > 4.9 m for the same value
of α. Therefore, Chenet al’s results are consistent with those of Speroet al.

Others have also carried out gravitational experiments to test the inverse square law,
most of their experimental results being in conflict with Long’s positive result. This can
be seen clearly from theα–λ graph of figure 1. However, it is still unknown why Long’s
result was different from that of other workers. From the interpretational point of view,
the method used by Chen assumes that the ring is an ideal one without thickness. Thus his
analytical formulae are only approximations. It is therefore worthwhile to reanalyse these
experiments using a full analytical formula which treats the masses as true 3D bodies.

As in other kinds of gravitational experiments (such as the measurement of the constant
of gravitation,G), the torsion balance is still the main detector used in the laboratory to
verify the inverse square law, and the cylindrical body once again is the most often used
form for the attracting mass. If the interaction between the attracting mass and test mass
is not an inverse square relationship, then classical formulae developed for the potentials
and attractions of Newtonian gravity will not be applicable. Therefore, formulae for non-
Newtonian forces in different situations will need to be developed, because even a perfect
sphere cannot then be treated as a point mass.

There are two effects of non-Newtonian forces in laboratory experiments, one coming
from the physical separation of the attracting mass from the attracted mass, and the
other arising from the geometric shapes of the masses themselves. In this work, some
examples of analytic solutions to non-Newtonian force problems will be presented for the
case of cylindrical geometry, since, as mentioned above, most test masses in gravitational
experiments use such cylindrically shaped bodies. These solutions will be used below
to reanalyse the Long and Speroet al experiments; but they have wider applicability in
the interpretation and design of other experiments in the search for the existence of non-
Newtonian forces.
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Figure 1. Allowed values of the Yukawa ‘strength’
and ‘range’ parametersα andλ. Upper figure:α > 0;
lower figure: α < 0. The regions bounded by the
curves and the|α| = 1 line are excluded, i.e. the
inverse square law is followed.

2. The potential of a Yukawa-type force in the cylindrical coordinate system

The potentialVλ of a non-Newtonian force (for example a Yukawa-type force), due to a
distribution of mass of densityρ, obeys the modified Helmholtz equation

∇2Vλ − 1

λ2
Vλ = 4πGαρ(R) (1)

whereλ is the scale of the force action, andα is the coupling constant. The sign ofα can
be either positive or negative, in other words the overall attractive force may yet have a
repulsive component. The solution of equation (1) is well known to be

Vλ(R) = −Gα

∫
τ ′

ρ(R′)
|R − R′|e−|R−R′|/λ dτ ′ (2)

where the primed integration is carried out over the volume of the body of mass density
ρ(R′), the general point is labelledR ≡ (r, ϕ, z), and a point within the body is labelled
R′ ≡ (r ′, ϕ′, z′), as shown in figure 2.

For the Newtonian force we know that the gravitational potential due to a distribution
of mass of densityρ is

V (R) = −G

∫
τ ′

ρ(R′)
|R − R′| dτ (3)

and the Green’s function can be written as (Lockerbieet al 1993)

1

|R − R′| =
∞∑

m=0

εm cosm(ϕ − ϕ′)
∫ ∞

0
dkJm(kr)Jm(kr ′)e−k|z−z′|

εm = 1 (m = 0) εm = 2 (m > 0)

(4)

where theJm(x) are the ordinary Bessel functions of orderm.
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Figure 2. The geometry used for the calculation of the non-Newtonian interaction between a
unit source mass and a hollow cylindrical body.

In the following we will show that the functione
−|R−R′ |/λ
|R−R′| may be written as

e−|R−R′|/λ

|R − R′| =
∞∑

n=0

εn cosn(ϕ − ϕ′)
∫ ∞

0

1√
k2 + 1/λ2

dk kJn(kr)Jn(kr ′)e−
√

k2+1/λ2|z−z′|

εn = 1 (n = 0) εn = 2 (n > 0).

(5)

Using this formula the interesting cases of (i) the non-Newtonian interaction between
‘source’ and ‘test’ masses in the form of cylindrical bodies, and (ii) some important
experiments for testing the inverse square law, will be analysed.

First of all a set of functions

fs,k,n(R) =
√

k

2π
Jn(kr)einϕ+isz (6)

will be defined, where 06 k 6 ∞, −∞ 6 s 6 ∞, n = 0, ±1, ±2, . . ..
It is straightforward to show that the set of functions are orthonormal in a whole space,

so that ∫ 2π

0
dϕ

∫ ∞

−∞
dz

∫ ∞

0
fs,k,n(R)f ∗

s ′,k′,n′(R)r dr = δnn′δ(s − s ′)δ(k − k′) (7)

where the superscript∗ denotes complex conjugation,δnn′ is the Kronneker delta, andδ(x)

is the Dirac delta-function†.
The functions in (6) are the eigenfunctions of the 3-dimensional modified Helmholtz

equation in the cylindrical coordinate system

∇2f + (s2 + k2)f = 0. (8)

This is so because the modified Helmholtz equation can be expressed in circular cylindrical
coordinates(r, ϕ, z) as

1

r

∂

∂r

(
r
∂f

∂r

)
+ 1

r2

∂2f

∂ϕ2
+ ∂2f

∂z2
+ (s2 + k2)f = 0

† Let Q ≡ (s, k, n) be a vector in the index manifold, and let
∫

dQ ≡ ∑∞
n=−∞

∫ ∞
−∞ ds

∫ ∞
0 dk. Then the functions

fQ(R) defined in (6) represent anorthonormal and completeset of functions onR3, since for any quadratically
integrable functionP(R) we have, (i)P(R) = ∫

dQ · pQ · fQ(R), and (ii)
∫

P 2(R) · dR = ∫
dQ · p2

Q (the

Parseval, or completeness, identity).
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and the general solution to this equation can be written in separable formf =
8(ϕ)<(r)Z(z), where<, 8, andZ are solutions of the separated equations

1

r

d

dr

(
r

dR

dr

)
+

(
k2 − n2

r2

)
< = 0 solutions:< = Jn(kr)

d2Z

dz2
+ s2Z = 0 solutions:Z = eisz

d28

dϕ2
+ n28 = 0 solutions:8 = einϕ

so that one can write the eigenfunctions asfs,k,n(R) =
√

k
2π

Jn(kr)einϕ+isz, as in (6) above.
Now let the Yukawa potentialVλ(R) be

Vλ(R) =
∞∑

n=−∞

∫ ∞

−∞
ds

∫ ∞

0
V (s, k, n)fs,k,n(R) dk. (9)

Thus equation (9) is simply an expansion of the potential in terms of the cylindrical
eigenfunctions of modified Helmholtz equation,

√
k

2π
Jn(kr)einϕ+isz, with discrete eigenvalues

n, and two continuous eigenvalue spectra ink ands.
Substituting equation (9) into equation (1), and using equation (8), leads to

∞∑
n=−∞

∫ ∞

−∞
ds

∫ ∞

0
V (s, k, n)fs,k,n(R)(−s2 − k2) dk − 1

λ2
Vλ(R) = 4πGαρ(R)

which can be written as
∞∑

n=−∞

∫ ∞

−∞
ds

∫ ∞

0
V (s, k, n)fs,k,n(R)

(
s2 + k2 + 1

λ2

)
dk = −4πGαρ(R).

Multiplying by the complex conjugatef ∗
s ′,k′,n′(R), integrating over all values ofs and k,

and summing overn, we have

∞∑
n=−∞

∫ ∞

−∞
ds

∫ ∞

0
V (s, k, n)

(
s2 + k2 + 1

λ2

)
dk

∫
τ

fs,k,n(R)f ∗
s ′,k′,n′(R) dτ

= − 4πGα

∫
τ

f ∗
s ′,k′,n′(R)ρ(R) dτ.

Using equation (7), the equation above becomes

∞∑
n=−∞

∫ ∞

−∞
ds

∫ ∞

0
V (s, k, n)

(
s2 + k2 + 1

λ2

)
δnn′δ(k − k′)δ(s − s ′) dk

=
(

s ′2 + k′2 + 1

λ2

)
V (s ′, k′, n′)

= − 4πGα

∫
τ

f ∗
s ′,k′,n′(R)ρ(R) dτ.

Now substitutingV (s, k, n) = − 4πGα
(s2+k2+1/λ2)

∫
τ ′ f

∗
s,k,n(R

′)ρ(R′) dτ ′ into equation (9) leads
to

Vλ(R) = −4πGα

∫
τ ′

ρ(R′) dτ ′
{ ∞∑

n=−∞

∫ ∞

−∞
ds

∫ ∞

0

fs,k,n(R)f ∗
s,k,n(R

′)(
s2 + k2 + 1

λ2

) dk

}
. (10)
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Comparing equation (10) with equation (2) it is obvious that

e−|R−R′|/λ

|R − R′| = −4π

∞∑
n=−∞

∫ ∞

−∞
ds

∫ ∞

0

fs,k,n(R)f ∗
s,k,n(R

′)(
s2 + k2 + 1

λ2

) dk

= − 1

π

∞∑
n=−∞

ein(ϕ−ϕ′)
∫ ∞

0
kJn(kr)Jn(kr ′)

{ ∫ ∞

−∞

eis(z−z′)(
s2 + k2 + 1

λ2

) ds

}
dk. (11)

The integral inside the braces in equation (11) is well known (Prudnikovet al 1986):∫ ∞

−∞

eis(z−z′)(
s2 + k2 + 1

λ2

) ds = −πe−|z−z′|
√

k2+1/λ2√
k2 + 1/λ2

. (12)

Substituting equation (12) into equation (11), we finally get

e−|R−R′|/λ

|R − R′| =
∞∑

n=−∞
ein(ϕ−ϕ′)

∫ ∞

0

k√
k2 + 1/λ2

Jn(kr)Jn(kr ′)e−
√

k2+1/λ2|z−z′| dk. (13)

Thus, the potential of a Yukawa-type force due to a distribution of mass of densityρ can
be written as

Vλ(R) = 4πGα

∫
τ ′

ρ(R′) dτ ′
∞∑

n=0

εn cosn(ϕ − ϕ′)

×
∫ ∞

0

k√
k2 + 1/λ2

Jn(kr)Jn(kr ′)e−
√

k2+1/λ2|z−z′| dk (14)

whereεn = 1, (n = 0); εn = 2, (n > 0).

3. The interaction of a Yukawa-type force between a unit point-mass and a finite
hollow cylinder

First of all we find the potential energy of aunit mass at position(r, ϕ, z), in the potential
field of equation (14), produced by a bulk hollow cylinder having a density, semi-length,
and inner and outer radii denoted byρ, `, a and b, respectively. The geometry is shown
in figure 2, where the origin of the coordinate system is placed at the centre of mass of the
cylinder. Therefore, we have a mutual potential energy of

Uλ(r, ϕ, z) = 4πGαρ

∞∑
n=0

εn

∫ 2π

0
cosn(ϕ − ϕ′) dϕ′

∫ ∞

k=0

k dk√
k2 + 1/λ2

×
∫ b

a

Jn(kr)Jn(kr ′)r ′ dr ′
∫ `

−`

e−
√

k2+1/λ2|z−z′| dz′. (15)

The integration depends on the position of the mass with respect to thez axis. If z 6 −`

or z > ` then

Uλ(r, z) = −2πGαρ

∫ ∞

0

J0(kr) dk

k2 + 1/λ2
[bJ1(kb) − aJ1(ka)]

×
[
e−

√
k2+1/λ2(z−`) − e−

√
k2+1/λ2(z+`)

]
(16)

and if −` 6 z 6 ` then

Uλ(r, z) = −2πGαρ

∫ ∞

0

J0(kr) dk

k2 + 1/λ2
[bJ1(kb) − aJ1(ka)]

×
[
2 − e−

√
k2+1/λ2(`−z) − e−

√
k2+1/λ2(`+z)

]
. (17)
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The axial force can be found from the first derivative of equation (16) or equation (17), as
appropriate, and we represent these two cases in equations (18) and (19) below, forz 6 −`

or z > `, and−` 6 z 6 `, respectively.

Fz,λ(r, z) = − ∂

∂z
Uλ(r, z) = −2πGαρ

∫ ∞

0

J0(kr) dk√
k2 + 1/λ2

[bJ1(kb) − aJ1(ka)]

×
[
e−

√
k2+1/λ2(z−`) − e−

√
k2+1/λ2(z+`)

]
(18)

Fz,λ(r, z) = − ∂

∂z
Uλ(r, z) = −2πGαρ

∫ ∞

0

J0(kr) dk√
k2 + 1/λ2

[bJ1(kb) − aJ1(ka)]

×
[
e−

√
k2+1/λ2(`−z) − e−

√
k2+1/λ2(`+z)

]
. (19)

In a similar fashion the radial force can be found from the first derivative of equations (16)
and (17):

If z 6 −` or z > ` then

Fr,λ(r, z) = − ∂

∂r
Uλ(r, z) = −2πGαρ

∫ ∞

0

J1(kr)k dk

k2 + 1/λ2
[bJ1(kb) − aJ1(ka)]

×
[
e−

√
k2+1/λ2(z−`) − e−

√
k2+1/λ2(z+`)

]
(20)

and if −` 6 z 6 ` then

Fr,λ(r, z) = − ∂

∂r
Uλ(r, z) = −2πGαρ

∫ ∞

0

J1(kr)k dk

k2 + 1/λ2
[bJ1(kb) − aJ1(ka)]

×
[
2 − e−

√
k2+1/λ2(`−z) − e−

√
k2+1/λ2(`+z)

]
. (21)

In particular, if the unit mass is considered to be placed on thez axis, then theaxial force
is

Fz,λ(0, z) = −2πGαρ

∫ ∞

0

dk√
k2 + 1/λ2

[bJ1(kb) − aJ1(ka)]

×
[
e−

√
k2+1/λ2(z−`) − e−

√
k2+1/λ2(z+`)

]
(22)

for z 6 −` or z > ` and

Fz,λ(0, z) = −2πGαρ

∫ ∞

0

dk√
k2 + 1/λ2

[bJ1(kb) − aJ1(ka)]

×
[
e−

√
k2+1/λ2(`−z) − e−

√
k2+1/λ2(`+z)

]
(23)

for −` 6 z 6 `, respectively.
Equations (22) and (23) can be simplified by using one general formula (Prudnikovet

al 1986):∫ ∞

0

(
1/λ2 + k2

)−1/2
e
−c

(
1
λ2 +k2

)
J1(γ k) dk

= I1/2

(
1

2λ
[(c2 + γ 2) − c]

)
K1/2

(
1

2λ
[(c2 + γ 2) + c]

)
.

Wherec = z ± ` or c = ` ± z, γ = a or γ = b and

I1/2(z) = 1√
2πz

(ez − e−z) K1/2(z) =
√

π

2z
e−z.
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One then easily obtains

Fz,λ(0, z) = −2πGαρλ

[
e−

√
b2+(z+`)2

λ − e−
√

b2−(z+`)2

λ − e−
√

a2+(z+`)2

λ + e−
√

a2+(z−`)2

λ

]
(24)

for both cases.
One particular case of equation (21) is for the infinitely long cylinder. Because the

force does not depend onz, we find the radial force for the casez = 0:

Fr(r) = 4πGαρ

∫ ∞

0

J1(kr)k dk

(k2 + 1/λ2)
[bJ1(kb) − aJ1(ka)]

∫ ∞

0
e−

√
k2+1/λ2z′

dz. (25)

But from the integration formula (Prudnikovet al 1986)∫ ∞

0

k dk

k2 + 1/λ2
J1(kr)J1(kc) = I1(c/λ)K1(r/λ)

whereI1(x) and K1(x) are modified Bessel functions, andc = a, or c = b in this case.
Equation (25) then becomes

Fr(r) = 4πGαρ[bI1(r/λ)K1(b/λ) − aI1(r/λ)K1(a/λ)]. (26)

If we replace the unit mass by a uniform sphere having a total massMsph, and a radius
Rsph, with its centre of mass placed at the point(r, ϕ, z), then all the expressions above for
the unit point mass remain valid, but become multiplied by a factorξλMsph. The sphere’s
form-factorξλ is (Gibbons and Whitinget al 1981)

ξλ = 3

(
λ

Rsph

)3

·
[
Rsph

λ
cosh

(
Rsph

λ

)
− sinh

(
Rsph

λ

)]
which easily can be verified by direct integration of equation (2) over the body of sphere.

If, on the other hand, the unit mass were to be replaced by another cylindrical body,
then equation (19) can be integrated straightforwardly over the test mass volume. Indeed
this situation corresponds to the real experimental design that was proposed originally in
the framework of the ‘M2’ STEP programme, in order to test Newton’s inverse square law
at the relatively short distance of a few centimetres (ESA SCI (93) 1993).

Considering now the situation in which a cylindrical test mass is placed (for example)
inside an attracting mass that possesses the same symmetry, then one finds the axial forces
between them to be

Fz,λ(r, z) = −2πGαρρs

∫ ∞

0

dk

k(k2 + 1/λ2)
[bJ1(kb) − aJ1(ka)][bsJ1(kbs) − asJ1(kas)]

×
[
2 − e−

√
k2+1/λ2(`+`s−d) − e−

√
k2+1/λ2(`−`s+d)

− e−
√

k2+1/λ2(d+`s−`) + e−
√

k2+1/λ2(`+`s+z)
]

where as , bs and `s are the inner and outer radii, and semi-length of the test mass
respectively, andd is the distance between the cylinders’ centres of mass.

Similar formulae exist to those of equations (18)–(21) for both the cases of a cylindrical
test mass placed inside or outside a cylindrical attracting mass. Thus, in general, the usually
required 6D integration of the gravitational interaction—carried out over the volumes of two
cylindrical bodies—can be replaced by the 1D infinite-range integration above. Furthermore
this infinite-range integration can be replaced by a finite integration (see appendix).
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4. Analysis of the experimental tests of the inverse square law of gravitation

The most sensitive and accurate methods used to verify the inverse square law are the
Cavendish-type laboratory measurements. The physical basis of such experiments consists
in the measurement of the dynamical parameters of a high-quality torsion balance, placed in
the gravitational field produced by source masses of well defined shape and density. Typical
distances at which the source and test masses can be separated are from about 1 to 103 cm.
The limited scale of the laboratory gravity experiments is a consequence of the extreme
weakness of the gravitational interaction.

The first result indicating a violation of the inverse square law was reported by Long
(1976). He claimed that the inverse square law of gravity breaks down at the distance scale
of the order of 0.1 m. This stimulated a great deal of subsequent experiment work, and, for
example, Speroet al (1980) carried out an experimental test of the inverse square law. His
results were in obvious conflict with those of Long. In theα–λ plot, interpreted within the
framework of a single Yukawa potential term, then Long’s data are in the area of Speroet
al ’s ‘excluded’ part. Subsequently all other experiments, Hoskinset al (1985) and Chenet
al (1984) etc, find negative results, as shown in figure 1.

Figure 1 is interpreted by assuming the masses are point masses, for one Yukawa force
term. However, there is a strong suggestion that such terms should be associated in pairs
with opposite sign. That is, an attractive force would be accompanied by a repulsive one to
give near cancellation. If one, then why not two?—indeed the result for one Yukawa term
may be quite different from that using two terms, e.g. Staceyet al (1987), Fischbachet al
(1991).

In the following we shall use the fully analytical formulae developed above to treat the
3D cylindrical bodies that were used in both Long’s and Speroet al’s experiments, and
then reanalyse their results in this light for both one and two Yukawa force terms.

4.1. Long’s experiment

The principle of the experiment performed by Long (1976), shown in figure 3, is that the
dimensions and masses of the two rings, one large and one small, are chosen so that the
maximum force exerted by each is the same—according to the inverse square law. The
far ring (the larger one) was made of brass, and weighed 57 580.83 g. It was 7.633 cm
thick from back to front, and the inner and outer radii were 21.589 cm and 27.112 cm,
respectively. The near ring (the smaller of the two) was made of tantalum, and weighed
1255.271 g. Its thickness was 1.7765 cm, and its inner and outer radii were 2.7513 cm and
4.5536 cm, respectively. As the Newtonian field of the rings is very flat at the ‘Helmholtz’
point, the positional accuracy in the placement of the rings was considered not to be so
great.

The Newtonianforce of a ring along its cylindrical axis is

Fz = 2πGρ
{√

a2 + (z − `)2 −
√

a2 + (z + `)2 −
√

b2 + (z − `)2 +
√

b2 + (z + `)2
}

(27)

where a and b are the inner and outer radii, respectively, and` is semi-length (semi-
thickness) of the ring.

From setting∂Fz

∂z
= 0 we find the ring locations to beZmax = 17.415 (cm) for the large

ring andZmax = 2.6088(cm) for the small ring. These values are consistent with those of
Long, although in his paper the indicated distances seem to be measured from the surface
of the rings, instead of from their centres.
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Figure 3. Apparatus used in Long’s experiment (1976)—see text for
details.

The gravitational force was detected with a 48.6 cm Cavendish torsion balance, and the
test mass was a sphere of tantalum weighing 50 g which was suspended 87 cm below the
arm of the balance.

Long expressed his results in terms of the relative difference of torque produced by the
rings. If T` is the torque exerted by the large ring andTs that exerted by the small ring,
then their relative difference is equal to

1 = T` − Ts

Ts
. (28)

When the departures from the nominal dimensions and masses of the rings are taken
into account, and the forces of the rings on the balance-arm are taken into account, the
relative difference of torque for Newtonian gravity would be1N = 0.03807± 0.0005. The
experimental value,1, was found by measuring directly the torque differenceT`−Ts, by first
putting one ring and then the other in position. This gave a value of1 = 0.04174±0.0004.

If F`,N, Fl,NN and Fs,N, Fs,NN are Newtonian and non-Newtonian forces for the large
and small rings, respectively, then

1 = T` − Ts

Ts
= (F`,N + F`,NN) − (Fs,N + Fs,NN)

(Fs,N + Fs,NN)

= F`,N − Fs,N

(Fs,N + Fs,NN)
+ F`,NN − Fs,NN

(Fs,N + Fs,NN)
.

As F`,NN and Fs,NN are proportional toα and much smaller thanFs,N, and if the second
and higher powers ofα are ignored, then

1 = F`,N − Fs,N

Fs,N

(
1 − Fs,NN

Fs,N

)
+ F`,NN − Fs,NN

Fs,N

= 1N

(
1 − Fs,NN

Fs,N

)
+ 1NN (29)

where 1NN = (F`,NN − Fs,NN)/Fs,N, and F`,NN and Fs,NN can be calculated using the
formulae above (equations (24) and (29)).
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4.2. The experiments of Spero et al (1980)

Speroet al (1980) carried out an experiment based on an analogue of the Faraday cage in
electromagnetism, as shown in figure 4. They used a torsion balance to measure the change
in the force acting on a test mass suspended inside a long hollow cylinder, as the cylinder
was moved laterally. If the inverse square law holds, then the force inside an infinitely
long cylinder should be zero. Because it is not possible to make an infinitely long cylinder,
and as the test mass of a torsion balance has to be placed inside it, Speroet al used a
cylinder of lengthL = 60 (cm) and inside diameterD = 6 (cm). There exists a small net
‘end-effect’, but this need not be taken into account. The cylinder, of mass 10.44 kg and
wall thickness 1 cm, was made of high-purity double-vacuum-melted, type-316 stainless
steel. The test mass was a 20 g, 4.4 cm long cylinder of copper, hanging 83 cm below the
end of a torsion-balance boom of total length 60 cm.

Figure 4. Apparatus used in Speroet al’s
experiment (1980)—see text for details.

Speroet al presented their results as the torque change10 on the balance, as the
cylinder moved through a cycle. After comparing the total Newtonian predicted10 with
the experimental value they found

δ = 10(expt.) − 10(theor.)

= (0.02± 0.14) × 10−13 N m−1 · · · (×10−6 dyn cm−1). (30)

δ can be evaluated by using formulae above, asδ = 2FNNd, whered is the arm length of
the torsion balance (equations (26) and (30)).

4.3. Interpretation of the experimental results using two Yukawa terms

The non-Newtonian potential with two Yukawa terms can be written as

VNN = α
e−r/λα

r
− β

e−r/λβ

r

the case of just one term being simulated by settingβ = 0. The force corresponding to
the above potential can be written asFNN = (αfα,NN − βfβ,NN)ρ, wherefα,NN and fβ,NN

correspond to the Yukawa type force described above in slightly different form, for the
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convenience of analysis. Equation (24) is the axial force due to the non-Newtonian term
for an interaction between a cylindrical body and a point test mass, and so it can be used
directly for analysis of Long’s experiment. Similarly, equation (26) can be used directly
for analysis of Speroet al’s experiment.

Inserting Long’s experimental data into equation (24), and by using equation (29), one
obtains constraint equations for theα andλ of Long’s experiment (considering firstly only
one Yukawa term). The allowed region forα andλ can be calculated by using this constraint
equation, whilst varying the parameterλ. Inserting Speroet al ’s experimental data into
equations (26) and (30), one can find the allowed region ofα andλ for this experiment as
well. The interpreted results are plotted in figure 5.

Figure 5. Broken curve: the analysis of
this work, showing the calculated limit to the
allowed values for the parametersα and λ,
using a single Yukawa term. Excludedα–λ

values lie above the broken curve.

A similar calculation can be carried out for two Yukawa terms. Here two special cases
are considered. One is for the ratioRab = β/α = 0.99—making the two terms nearly cancel
each other out, and the other is forRab = 0.09—making one term dominate over the other,
in both cases for the specific conditionλα = λβ . These results are plotted in figure 6.

Figures 5 and 6 show clearly that theα–λ graph for two Yukawa terms has a similar
behaviour to theα–λ graph when only a single Yukawa term is considered, and indeed
Long’s results are found to be in the region which Speroet al’s exclude, for both situations.
This means that the positive result of Long’s experiment is still in conflict with that of
Speroet al’s work, even under this more wide-ranging and detailed analysis. This is true
for both one and two Yukawa terms. It is likely that the same results will be obtained for
Chen’s experiment, and others that are consistent with Speroet al’s result.

5. Conclusions

The analytical treatment of Yukawa type non-Newtonian forces in cylindrical geometry has
been used for the reinterpretation of gravitational experiments searching for a ‘fifth force’.
This work starts from a very general form of Yukawa force, leading on to calculate analytic
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Figure 6. Broken curves: the analysis of
this work, showing the calculated limits to
the allowed values for the parametersα and
λ, modelled using two Yukawa terms. The
strengths of these two terms are denoted by
α and β in the text, and the figure shows
the analysis as carried out for two values of
their relative strengthRab = β/α. Excluded
α–λ values lie above the respective broken
curves.

expressions for both axial and radial forces. The theory concerns the interaction between
a point gravitational source and a cylindrical body, and between two cylindrical bodies, as
well as between a point source and a sphere. The considerations here have been general
and can be widely applied to other fifth force experiments.

Two practical examples of their application have been to use them for reanalysis of
the results of Long’s and Spero’s experiments. Although the results support those of other
work, this work provides further meaningful support to the Newtonian gravitational inverse
square law of gravitation. It also gives a demonstration of the validity of the methods
developed above.

Appendix. On evaluation of some integrals involving the Bessel functions

In this appendix, we will show that the infinite integration in equation (A1) below can be
replaced by a finite integration. We begin by representing the previous formulae above
(equations (18)–(23)) as a linear combination of the following type of infinite integral:

I
(α,β)

(ν,µ) (p, q, s, λ) =
∫ ∞

0

dkk1−α

(k2 + 1/λ2)β/2
Jν(kp)Jµ(kq)e−s

√
k2+1/λ2

. (A1)

The authors of this paper have not found the explicit value of the integral above for any
particular values of the parameters(α, β, ν, µ)—even in the best collections of tabulated
integrals. On the other hand, numerical evaluation of the infinite integrals is not convenient,
due to the rapidly oscillating Bessel-function product under the integral sign.

First let us consider the following integral

I
(2,1)

(1,1) (p, q, s, λ) =
∫ ∞

0

dk

k(k2 + 1/λ2)1/2
J1(kp)J1(kq)e−s

√
k2+1/λ2

(A2)
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wherep, q ands are arbitrary positive parameters. Consider the expressions

J1(kp)J1(kq)

k
= f (k) =

∫ ∞

0
J1(kt)f (t)t dt

f (t) =
∫ ∞

0
J1(kt)f (k)k dk =

∫ ∞

0
J1(kt)J1(kp)J1(kq) dk. (A3)

The value of equation (A3) differs from zero only if the values of the parametersp, q, t

can form a triangle as shown in the following figure.

It means that the value of the image functionf (t) in equation (A3) is equal to zero for all
values of the parametert , except for the situation|p − q| < t < p + q, in which casef (t)

can be represented in the following way:

f (t) = 21(p, q, t)

πtpq
= h(p, q, t)

πpq
(A4)

where1(p, q, t) andh(p, q, t) are the area of the triangle and its height, respectively. It
is straightforward to show that

I
(2,1)

(1,1) (p, q, s, t) = 1

πpq

∫ p+q

|p−q|
h(p, q, t)t dt

∫ ∞

0

dk√
k2 + 1/λ2

J1(kt)e−s
√

k2+1/λ2

= λ

πpq

∫ p+q

|p−q|
h(p, q, t) dt

(
e−s/λ − e−√

s2+t2/λ
)
. (A5)

We can change the variable of integration to avoid the arbitrary parameters from the
integration limits. Taking account of the following obvious relations

h = pq sinα√
p2 + q2 − 2pq cosα

t =
√

p2 + q2 − 2pq cosα

dt = pq sinα dα√
p2 + q2 − 2pq cosα

we have, finally:

I
(2,1)

(1,1) (p, q, s, λ) = λ

π
pq

∫ π

0

sin2 α dα

p2 + q2 − 2pq cosα
(e−s/λ − e−

√
s2+p2+q2−2pq cosα/λ). (A6)

Using similar arguments it is straightforward to show that

I
(2,0)

(1,1) (p, q, s, λ) = 1

π
pq

∫ π

0

sin2 α dα

p2 + q2 − 2pq cosα

×
(

e−s/λ − s√
s2 + p2 + q2 − 2pq cosα

e−
√

s2+p2+q2−2pq cosα/λ

)
(A7)

and

I
(0,1)

(1,1) (p, q, s, λ) = 1

π
pq

∫ π

0

sin2 α dα

s2 + p2 + q2 − 2pq cosα

×
(

1

λ
+ 1√

s2 + p2 + q2 − 2pq cosα

)
e−

√
s2+p2+q2−2pq cosα/λ. (A8)
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Other forms of the integrals represented by equation (A1) can be related to equations (A6)–
(A8). For example, it is straightforward to check that

I
(1,1)

(0,1) (p, q, s, λ) ≡ 1

p

∂

∂p
(pI

(2,1)

(1,1) (p, q, s, λ)) (A9)

I
(0,2)

(1,1) (p, q, s, λ) =
∫ ∞

s

I
(0,1)

(1,1) (p, q, x, λ) dx (A10)

I
(2,2)

(1,1) (p, q, s, λ) = λ2[I (2,0)

(1,1) (p, q, s, λ) − I
(0,2)

(1,1) (p, q, s, λ)]. (A11)
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